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Abstract. An improved efficient method of calculating the hard bremsstrahlung correction to e+e− → 4f
for non-zero fermion masses is presented. The non-vanishing fermion masses allow us to perform the phase
space integrations to the very collinear limit. We therefore can calculate cross sections independent of
angular cuts. Such calculations are important for background studies. Results are presented for the total
and some differential cross sections for e+e− → ud̄µ−ν̄µ and the corresponding hard bremsstrahlung
process. The latter is of particular interest for a detailed investigation of the effects of final state radiation.
In principle, the process e+e− → ud̄µ−ν̄µγ is also interesting since it helps to set bounds on possible
anomalous triple and quartic gauge boson couplings involving photons. The size of mass effects is illustrated
by comparing the final states ud̄µ−ν̄µ(γ), cs̄µ−ν̄µ(γ) and ud̄τ−ν̄τ (γ).

1 Introduction

Precision measurements of properties of the intermediate
gauge bosons Z and W have deepened our understand-
ing of the electroweak interactions and consolidated the
validity of the electroweak Standard Model (SM) consid-
erably in the past decade. After the convincing success of
LEP1 and SLD experiments in pinning down the prop-
erties of the Z resonance we expect further advances in
measurements of the properties of the W boson which
are not yet known with comparable precision. As the SM
very precisely predicts the mass and the width of the W
a high accuracy determination of these parameters is of
crucial importance, because they allow us to improve in-
direct bounds on the Higgs mass or on new physics beyond
the SM. The precision of ongoing measurements, single W
production at the hadron collider TEVATRON, and W
pair production at LEP2 are limited by statistics and/or
by lack of detailed theoretical understanding.

The proper analysis of W± pair production at LEP2
and later at future high energy e+e− linear colliders re-
quires the accurate knowledge of the SM predictions in-
cluding all relevant radiative corrections. What we need
is a detailed understanding of the production and subse-
quent decay of W pairs, including the background pro-
cesses and photon radiation: e+e− → 4f, 4fγ, 4fγγ, · · ·,
where 4f denotes a possible four fermion final state. The
lowest order theoretical results for all the possible four
fermion final states have been already implemented in
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several Monte Carlo event generators and semi-analytic
programs, which have been thoroughly compared in [1].
Most of the programs include some classes of radiative
corrections such as the initial and final state radiation,
Coulomb corrections, running of the fine structure con-
stant, etc. While presently available e+e− → 4f, 4fγ ma-
trix elements are precise enough for the analysis of LEP2
data [2], at future linear colliders, a much better knowl-
edge of the radiative corrections will be necessary because
of the high statistics expected at these accelerators and be-
cause radiative corrections get more significant at higher
energies.

The complete one-loop electroweak radiative correc-
tions to the on-shell W± pair production including soft
bremsstrahlung were calculated in [3]. The hard brems-
strahlung process e+e− → W+W−γ was included in [4]
and [5]. For the process e+e− → W+W− → 4f of actual
interest to the experiments only partial results are avail-
able. We refer to [6] for a recent review of the status of
precision calculations for this case.

Sufficiently above the W± pair production threshold,
for most of the present applications, it seems to be suffi-
cient to take into account corrections to the double-reso-
nant diagrams only, i.e., e+e− → 4f via virtual W+W−
intermediate states. The validity of this approximation has
to be controlled by more complete calculations, however.
From a theoretical point of view it is certainly necessary to
evaluate the complete O(α) radiative corrections for the
different channels of the 2 → 4 fermion reactions. How-
ever, despite of the fact that some progress in calculating
the complete virtual one-loop electroweak radiative cor-
rections to e+e− → ud̄µ−ν̄µ have been reported in [7], the
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final result of such a calculation is still missing. Concern-
ing the real photon emission, the situation looks much
better. The hard bremsstrahlung for four fermion reac-
tions mediated by two resonant W bosons was calculated
in [8]. A similar calculation, extended by an inclusion of
collinear effects, was presented as a package WWF [9].
The complete lowest order result for e+e− → e−ν̄eud̄γ
was presented in [10] and calculations of e+e− → 4fγ
for an arbitrary final state were reported in [11]. Results
on bremsstrahlung for purely leptonic reactions have been
published in [6] and most recently predictions for all pro-
cesses e+e− → 4fγ with massless fermions have been pre-
sented in [12].

At a future linear collider, the proper treatment of the
collinear photons will be crucial and it requires to take
into account the fermion masses appropriately. Therefore,
in the present paper, we propose an efficient method of cal-
culating the hard photon bremsstrahlung for four fermion
production in e+e− annihilation without neglecting the
fermion masses. The phase space integration can there-
fore be performed to the very collinear limit. This al-
lows for calculating cross sections independent of angu-
lar cuts and estimating background contributions coming
from undetected hard photons. We present results for the
total and a few differential cross sections for the channel
e+e− → ud̄µ−ν̄µ and the corresponding bremsstrahlung
process. The latter is particularly suited for a detailed
investigation of effects related to final state photon emis-
sion, since the muons appear well separated from photons
in the detectors. In particular, it seems to be interest-
ing to study the influence of final state radiation on the
W mass measurement via this channel. Having the final
state photon resolution in e+e− → ud̄µ−ν̄µγ could also
make it possible to investigate the quartic γVWW cou-
plings (V = γ, Z), which are absent on the Born level of 4f
production. Of course, besides the new quartic couplings
there are additional triple γWW vertices as well. In the
soft photon limit, we can perform the integration over the
soft photon phase space analytically and demonstrate the
cut-off independence of the combined soft and hard pho-
ton bremsstrahlung cross section. We finally will illustrate
the importance of mass effects by comparing the channels
where ud̄ is replaced by cs̄. Similarly, we may replace the
µ by a τ lepton.

2 Method of calculation

In this section, we present a method for calculating the
matrix elements of a two-fermion to four fermion reaction
and an associated bremsstrahlung photon. The method is
an extension of the helicity amplitude method introduced
in [4] to final states of arbitrary spin.

As in [4], we use the Weyl representation for fermions
where the Dirac matrices γµ, µ = 0, 1, 2, 3, are given in
terms of the unit 2×2 matrix I and Pauli matrices σi, i =
1, 2, 3, by

γµ =

(
0 σµ

+

σµ
− 0

)
, (1)

with σµ
± = (I,±σi). In representation (1), the matrix γ5 =

iγ0γ1γ2γ3 and the chiral projectors P± = (1 ± γ5)/2 read

γ5 =

(
−I 0
0 I

)
, P− =

(
I 0
0 0

)
, P+ =

(
0 0
0 I

)
. (2)

A contraction of any four-vector aµ with the γµ matrices
of (1) has the form

/a = aµγµ =

(
0 aµσ+

µ

aµσ−
µ 0

)
=

(
0 a+

a− 0

)
. (3)

The 2 × 2 matrices a± can be expressed in terms of the
components of the four-vector aµ by

a+ =

(
a0 − a3 −a1 + ia2

−a1 − ia2 a0 + a3

)
,

a− =

(
a0 + a3 a1 − ia2

a1 + ia2 a0 − a3

)
.

(4)

In representation (1), the helicity spinors for a particle,
u(p, λ), and an antiparticle, v(p, λ), of four-momentum
(E,p) and helicity λ/2 = ±1/2 are given by

u(p, λ) =

(√
E − λ|p|χ(p, λ)√
E + λ|p|χ(p, λ)

)
,

v(p, λ) =

(
−λ√E + λ|p|χ(p,−λ)
λ
√
E − λ|p|χ(p,−λ)

)
,

(5)

and the helicity eigenstates χ(p, λ) can be expressed in
terms of the spherical angles θ and φ of the momentum
vector p as1

χ(p,+1) =

(
cos θ/2

eiφ sin θ/2

)
,

χ(p,−1) =

(
−e−iφ sin θ/2

cos θ/2

)
.

(6)

For simplicity we use real polarization vectors which
are defined again in terms of θ and φ

εµ(p, 1) = (0, cos θ cosφ, cos θ sinφ,− sin θ) ,
εµ(p, 2) = (0,− sinφ, cosφ, 0)

(7)

εµ(p, 3) = γ (β, sin θ cosφ, sin θ sinφ, cos θ) , (8)

where the longitudinal polarization component of (8) is
defined exclusively for a massive vector particle of energy
mγ and momentum mγβ. We could use complex polar-
ization vectors in the helicity basis as well, if we were
interested in definite helicity polarizations.

A polarized matrix element is calculated for a given set
of external particle momenta in a fixed reference frame,

1 Note that our phase convention differs from the one chosen
in [4].
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e.g. the center of mass system (c.m.s.) of the initial parti-
cles, where the initial momenta are parallel to the z axis.

Fermion masses are kept nonzero. The mass effects
play an essential role in the bremsstrahlung reactions when-
ever a collinear photon is emitted. They also are important
for tree level reactions with identical particles in the ini-
tial and final state, where a photon exchanged in the t
channel approaches its mass-shell. Moreover, by keeping
the fermion masses finite the Higgs boson exchange can
be incorporated in a consistent way.

In order to speed up numerical computation, we de-
compose the Feynman graphs into factors which depend
on a single uncontracted vector index and therefore may
be considered as generalized polarization vectors. They
can be easily computed and used as building blocks of
other graphs. For example, the coupling of an internal
gauge boson to the external fermions may be considered
as the generalized polarization vector εµ

V which is defined
as

εµ
V (p1, p2, λ1, λ2) = Dµν

V (q)ψ̄1(p1, λ1)γν

×
(
g
(−)
V P− + g

(+)
V P+

)
ψ2(p2, λ2)

=
[
−
(
g
(+)
V ψ̄I

1σ
µ
+ψ

II
2 + g

(−)
V ψ̄II

1 σµ
−ψ

I
2

)
+qµ/M2

V

((
m1g

(−)
V −m2g

(+)
V

)
ψ̄I

1ψ
I
2

+
(
m1g

(+)
V −m2g

(−)
V

)
ψ̄II

1 ψII
2

)]
/
(
q2 −M2

V

)
(9)

where ψ̄1(p1, λ1) = (ψ̄I
1 , ψ̄

II
1 ) and ψ2(p2, λ2) = (ψI

2 , ψ
II
2 )

are spinors for a particle or an antiparticle of four-momen-
tum pi, mass mi and helicity λi, as defined in (5). We have
denoted the chiral couplings of the ψ̄1ψ2V vertex by g(±)

V ,
Dµν

V (q) is the photon propagator in the Feynman gauge or
the massive gauge boson propagator in the unitary gauge
and q = ±p1 ± p2 is the four-momentum transfer. The
+(−) sign corresponds to an outgoing (incoming) particle.
In the case of a photon propagator we have MV = 0 and
only the first term in the square brackets on the right hand
side of (9) is present.

The photon emission from any of the external fermion
legs of the ψ̄1ψ2V vertex can be taken into account by
defining two other generalized polarization vectors:

εµ
γV (p1, p2, k, λ1, λ2, λ) = Dµν

V (q + k)ψ̄1(p1, λ1)gγ1/ε(k, λ)

× ±/p1 + /k +m1

(±p1 + k)2 −m2
1
γν

(
g
(−)
V P− + g

(+)
V P+

)
ψ2(p2, λ2)

=
gγ1

2p1 · kD
µν
V (q + k)

[
g
(+)
V ψ̄I

1
(
2p1 · ε∓ k+ε−)σ+

ν ψ
II
2

+g(−)
V ψ̄II

1
(
2p1 · ε∓ k−ε+

)
σ−

ν ψ
I
2

]
, (10)

where the upper (lower) sign is assumed if ψ1 represents
an outgoing particle (incoming antiparticle) and

εµ
V γ(p1, p2, k, λ1, λ2, λ) = Dµν

V (q + k)ψ̄1(p1, λ1)γν

×
(
g
(−)
V P− + g

(+)
V P+

) ±/p2 − /k +m2

(±p2 − k)2 −m2
2

×gγ2/ε(k, λ)ψ2(p2, λ2)

=
gγ2

2p2 · kD
µν
V (q + k)

[
g
(+)
V ψ̄I

1σ
+
ν

(−2p2 · ε± k−ε+
)
ψII

2

+g(−)
V ψ̄II

1 σ−
ν

(−2p2 · ε± k+ε−)ψI
2

]
, (11)

where the upper (lower) sign has to be taken when ψ2
represents an incoming particle (outgoing antiparticle). In
(10) and (11), εµ(k, λ) is the photon polarization vector
as defined in (7) and gγi are the photon couplings to ψi.

If we contract the triple gauge boson coupling

Γµνρ
(WWV )(p1, p2, p3) = gWWV [(p1 − p2)ρgµν (12)

+ (p2 − p3)µgνρ + (p3 − p1)νgµρ] ,

where p1, p2 and p3 are the incoming momenta of the
W+

µ ,W
−
ν and the neutral gauge boson Vρ, V = γ, Z0,

respectively, with two (generalized) polarization vectors,
say εν

1 , ερ
2, and with a gauge boson propagator we will

obtain another generalized polarization vector, e.g.

εσ
V (1, 2) = Dσµ

V (q)Γ (WWV )
µνρ εν

1ε
ρ
2. (13)

In (13), 1 and 2 stay for the four-momenta and polariza-
tions. With the help of the generalized polarization vec-
tors (9–11) and (13), the amplitude corresponding to any
Feynman diagram of a process e+e− → 4f(γ) may be
represented by one of the scalar functions F2n+1, E3 or
E4 we are going to define now. A fermion line containing
n+1 couplings to gauge bosons and n fermion propagators
sandwiched between external spinors can be represented
by the scalar function

F2n+1

(
ψ̄1, g

(+)
1 ε+1 , g

(−)
1 ε−

1 , p
+
1 , p

−
1 ,m1, g

(+)
2 ε+2 , g

(−)
2 ε−

2 , p
+
2 ,

p−
2 ,m2, · · · , p+

n , p
−
n ,mn, g

(+)
n+1ε

+
n+1, g

(−)
n+1ε

−
n+1, ψ2

)
= ψ̄1/ε1

(
g
(−)
1 P− + g

(+)
1 P+

)
/p1+m1
p2
1−m2

1
/ε2
(
g
(−)
2 P−

+g(+)
2 P+

) /p2+m2
p2
2−m2

2
· · · /pn+mn

p2
n−m2

n
/εn+1

(
g
(−)
n+1P− + g

(+)
n+1P+

)
ψ2,

(14)

where we have suppressed polarization indices. In the rep-
resentation (1–5), the algebra of 4×4 matrices in (14) can
be easily reduced to the algebra of 2 × 2 matrices. This
kind of reduction has been used already in (9–11). Uti-
lizing the 2 × 2 algebraic representation speeds up the
numerical computation and allows for a simultaneous cal-
culation of the γ and Z contributions. We have indicated
the use of the reduced form by writing explicitly the de-
pendence on the 2 × 2 matrices ε±

i , p
±
i , defined according

to (4), on the left hand side of (14). The general form of
this reduction is quite a complicated formula. Therefore,
we restrict ourselves to the presentation of an example of
the function F3 which can be written as

F3

(
ψ̄1, g

(+)
1 ε+1 , g

(−)
1 ε−

1 , p
+
1 , p

−
1 ,m1, g

(+)
2 ε+2 , g

(−)
2 ε−

2

)
= m1g

(+)
1 g

(−)
2 ψ̄I

1ε
+
1 ε

−
2 ψ

I
2 + g

(+)
1 g

(+)
2 ψ̄I

1ε
+
1 p

−
1 ε

+
2 ψ

II
2

+g(−)
1 g

(−)
2 ψ̄II

1 ε−
1 p

+
1 ε

−
2 ψ

I
2 +m1g

(−)
1 g

(+)
2 ψ̄II

1 ε−
1 ε

+
2 ψ

II
2 .

(15)

A contraction of the triple gauge boson coupling (12) with
three polarization vectors εµ

1 , ε
ν
2 and ερ

3 can be considered
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as a scalar function

E3 [p1, ε1, p2, ε2, p3, ε3) = gWWV ((p1 − p2) · ε3ε1 · ε2
+(p2 − p3) · ε1ε2 · ε3 + (p3 − p1) · ε2ε1 · ε3] . (16)

Similarly, the quartic gauge boson coupling

Γµνρσ
(4) = gV1V2WW (gµρgνσ + gµσgνρ − 2gµνgρσ) , (17)

where the vector indices µ, ν are associated with the neu-
tral gauge bosons V1 and V2 and ρ, σ with W+ and W−,
if contracted with four polarization vectors εµ

1 , ε
ν
2 , ε

ρ
3 and

εσ
4 can be considered as another scalar function

E4 (ε1, ε2, ε3, ε4) = gV1V2WW (ε1 · ε3ε2 · ε4
+ε1 · ε4ε2 · ε3 − 2ε1 · ε2ε3 · ε4) . (18)

Note that similar scalar functions can be defined for the
Higgs boson by replacing the vector boson coupling and
propagator in (9–11) and (13) by the Higgs coupling and
propagator.

The functions (14), (16) and (18) can easily be imple-
mented in a Fortran program and may be computed nu-
merically for any specific set of the particle momenta and
polarizations. The Fortran 90 language standard which
contains a number of new features and intrinsic functions
especially for array manipulations is particularly suitable
for this task.

The method described above can be used to calculate
the matrix element of any process of e+e− annihilation
into four fermions and a photon. Actually, the method is
quite general and can be applied to any 2 → n tree level
reaction, not necessarily in the framework of the standard
model, with massive or massless fermions and/or bosons
in the final state. However, it may happen that one or a
few extra functions will have to be defined in addition to
those defined in (14), (16) and (18). Practically the only
limitation of the method is the feasibility of phase space
integration which is performed numerically by applying
the Monte Carlo method.

3 Application to e+e− → ud̄µ−ν̄µ

and e+e− → ud̄µ−ν̄µγ

Let us demonstrate how the method of Sect. 2 works in
case of the tree level four fermion reaction

e+(p1, λ1) + e−(p2, λ2) → u(p3, λ3) + d̄(p4, λ4)
+ µ−(p5, λ5) + ν̄µ(p6, λ6), (19)

where the four-momenta and helicities are indicated in
parenthesis. The Feynman diagrams of the process (19)
are shown in Fig. 1. Although the fermion mass effects
are irrelevant for the reaction (19), we keep masses finite
for the sake of illustration. However, we neglect the Higgs
boson exchange contribution which is suppressed by ratios
of the fermion masses to the W boson mass.

We define the necessary generalized polarization vec-
tors using (9):

εµ
γ(p1, p2, λ1, λ2) = Dµν

γ (p12)v̄1(p1, λ1)γνgγeu2(p2, λ2),

εµ
Z(p1, p2, λ1, λ2) = Dµν

Z (p12)v̄1(p1, λ1)γν

×
(
g
(−)
Ze P− + g

(+)
Ze P+

)
u2(p2, λ2),

εµ
W+(p3, p4, λ3, λ4) = Dµν

W (p34)ū3(p3, λ3)γνgW

×P−v4(p4, λ4),
εµ

W −(p5, p6, λ5, λ6) = Dµν
W (p56)ū5(p5, λ5)γνgW

×P−v6(p6, λ6), (20)

where we have introduced the shorthand notation p12 =
p1 + p2, p34 = p3 + p4 and p56 = p5 + p6; gγe, g

(±)
Ze and

gW are the standard model couplings. We use constant
widths for the massive gauge bosons. They are introduced
through the complex mass parametersM2

V = m2
V −imV ΓV

in the propagatorsDµν
V ,V = W,Z. However, we keep a real

value of the electroweak mixing parameter sin θW. This
simple prescription preserves the electromagnetic gauge
invariance, also for the nonzero fermion masses. This has
been checked analytically and confirmed by the numeri-
cal calculation. We would like to stress at this point that
this result is obtained with two independent widths ΓW

and ΓZ which violate the SU(2) gauge invariance. This
finding seems to contradict the discussion of this issue in
[13]. The resulting violation of the high energy unitarity
cancellations for e+e− → 4f is suppressed by the factor
ΓWMW /s. A comparison of different gauge boson width
prescriptions performed in [6] and [12] shows that our sim-
ple prescription is satisfactory as far as the experimental
precision of LEP2 and future linacs is concerned.

Using polarization vectors (20) we can express the he-
licity amplitudes of reaction (19) corresponding to the di-
agrams of Fig. 1 in terms of the functions defined in (14),
(16) and (18):

M1 = F3
(
v̄1, 0, gW ε−

W+ , p
+
2 − p+

56, p
−
2 − p−

56, 0,

gW ε−
W − , u2

)
,

M2 +M3 = E3
(
p56, εW − , p34, εW+ , p12, gWWγεγ

+gWWZεZ

)
,

M4 +M5 = F3
(
ū3, gγuε

+
γ + g

(+)
Zu ε

+
Z , gγuε

−
γ + g

(−)
Zu ε

−
Z ,

p+
3 − p+

12, p
−
3 − p−

12,m3, 0, gW ε−
W − , v4

)
,

M6 +M7 = F3
(
ū3, 0, gW ε−

W − , p
+
12 − p+

4 , p
−
12 − p−

4 ,

m4, gγdε
+
γ + g

(+)
Zd ε

+
Z , gγdε

−
γ + g

(−)
Zd ε

−
Z , v4

)
,

M8 +M9 = F3
(
ū5, gγµε

+
γ + g

(+)
Zµ ε

+
Z , gγµε

−
γ + g

(−)
Zµ ε

−
Z ,

p+
5 − p+

12, p
−
5 − p−

12,m5, 0, gW ε−
W+ , v6

)
,

M10 = F3
(
ū5, 0, gW ε−

W+ , p
+
12 − p+

6 , p
−
12 − p−

6 ,

0, 0, gZνε
−
Z , v4

)
, (21)

where we have used the shorthand notation vi = vi(pi, λi),
i = 1, 4, 6, uj = uj(pj , λj), j = 2, 3, 5 for the spinors which
are defined according to (5). The standard model cou-
plings of (20) and (21) are defined in terms of the electric
charge e and the electroweak mixing parameter sin2 θW.
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Fig. 1. The Feynman diagrams of re-
action (19)

By comparing (21) with Fig. 1 one observes that the
diagrams which differ only by the replacement of the pho-
ton and Z propagators can be calculated simultaneously.
This is one of the advantages of the method presented.

Now the modulus squared of the spin averaged ma-
trix element of the reaction (19) can easily be computed
numerically.

The matrix element of the bremsstrahlung reaction

e+(p1)+ e− (p2) → u(p3) + d̄(p4) + µ−(p5)
+ ν̄µ(p6) + γ(p7), (22)

where the particle four-momenta are indicated in paren-
thesis is calculated in the same way. The 71 Feynman di-
agrams of the process (22) can be obtained from those
of Fig. 1 by attaching an external photon line to each
charged particle as well as to the triple gauge boson ver-
tex. We again neglect the Higgs boson contribution.

In the soft photon limit, |p7| < ω, the matrix element
of reaction (22) takes the simple factorized form

Mγ (p1, p2, p3, p4, p5, p6, p7, λ1, λ2, λ3, λ4,

λ5, λ6, λ7)||p7|<ω

= −
(
gγl

pµ
1

p1 · p7
− gγl

pµ
2

p2 · p7
+ gγu

pµ
3

p3 · p7

− gγd
pµ
4

p4 · p7
+ gγl

pµ
5

p5 · p7

)
εµ(p7, λ7) (23)

× M0(p1, p2, p3, p4, p5, p6, λ1, λ2, λ3, λ4, λ5, λ6),

where M0 is the matrix element of reaction (19) and the
photon–fermion couplings are given by gγl = e, gγu = 2/3e
and gγd = −e/3.

4 The phase space integration

The phase space integration is performed with the Monte
Carlo integration routine VEGAS [15]. We integrate out
the dependence on the azimuthal angle related to the ro-
tational symmetry with respect to the beam axis. This

symmetry is satisfied as long as we do not consider trans-
versely polarized initial beams. Thus, the number of in-
tegrations is reduced from 8 to 7 and from 11 to 10 for
reactions (19) and (22), respectively.

The 7 dimensional phase space element of the reaction
(19) is parametrized by

d7Lips = (2π)−7λ
1/2(s, s34, s56)

8s
λ1/2(s34,m2

3,m
2
4)

8s34

×λ1/2(s56,m2
5,m

2
6)

8s56
ds34ds56d cos θdΩ3dΩ5, (24)

where s = (p1 + p2)2, s34 = (p3 + p4)2, s56 = (p5 + p6)2, θ
is an angle between the momenta p3 + p4 and the z axis
of the c.m. system which is directed along the positron
momentum p1. dΩ3 = d cos θ3dφ3 (dΩ5 = d cos θ5dφ5 ) is
the solid angle element of p3 (p5) in the respective c.m.
frame where p3 + p4 = 0 (p5 + p6 = 0).

The integration limits in the invariants s34 and s56 of
(24) are given by

(m3 +m4)2 ≤ s34 ≤ (
√
s−m5 −m6)2, (25)

(m5 +m6)2 ≤ s56 ≤ (
√
s− √

s34)2 (26)

and the spherical angles vary in the full range, i.e.

−1 ≤ cos θ ≤ 1,
0 ≤ Ωi ≤ 4π, i = 3, 5. (27)

The 10 dimensional phase space element of the reac-
tion (22) is parametrized in different ways dependent on
whether we want to account for the peaking related to the
photon emission from the initial or final state fermions. In
order to deal with the initial state radiation peaking we
parametrize the phase space by

d10Lips = (2π)−10E7

2
λ1/2(s′, s34, s56)

8s′
λ1/2(s34,m2

3,m
2
4)

8s34

×λ1/2(s56,m2
5,m

2
6)

8s56
dE7dΩ7ds34ds56d cos θ34dΩ3dΩ5,

(28)
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where s′ = (p1+p2−p7)2. The photon variables, the energy
E7, and the solid angle Ω7, are defined in the frame where
p1 + p2 − p7 = 0. The polar angle θ34 of the momentum
vector p3+p4 with respect to the positron beam is defined
in the same frame. The invariant masses s34, s56 and solid
angles Ω3, Ω5 are defined as in (24).

The integration limits in the photon energy E7 and in
the invariants s34, s56 of (28) read

Ecut ≤ E7 ≤ s− (m3 +m4 +m5 +m6)2

2
√
s

,(29)

(m3 +m4)2 ≤ s34 ≤ (
√
s′ −m5 −m6)2, (30)

(m5 +m6)2 ≤ s56 ≤ (
√
s′ − √

s34)2, (31)

where Ecut is the minimum hard photon energy to be de-
tected and s′ =

√
s(

√
s − 2E7). The spherical angles of

(28) vary in the full range, as in (27).
On the other hand, the radiation off the final state d̄

quark is dealt with in another parametrization:

d10 Lips = (2π)−10λ
1/2(s, s347, s56)

8s
λ1/2(s56,m2

5,m
2
6)

8s56

×1
8

ds347ds56d cos θ347dE3dE7dΩ3dφ37dΩ5, (32)

where the polar angle θ347 of the momentum p3 +p4 +p7
is defined in the c.m.s.; the energy E3 and the spherical
angle Ω3 of the u quark, the photon energy E7 and the
azimuthal angle φ37 between the u quark and the γ are
defined in the relative c.m.s. of u and d̄ quarks and the
photon; the spherical angle Ω5 is defined in the c.m.s. of
the µ− and ν̄µ.

The integration limits are now specified by

(m3 +m4)2 ≤ s347 ≤ (
√
s−m5 −m6)2, (33)

(m5 +m6)2 ≤ s56 ≤ (
√
s− √

s347)2, (34)

m3 ≤ E3 ≤ [m2
3 + λ(s,m2

3,m
2
4(1

+Ecut/E
max
4 ))/(4s)]1/2

, (35)

E′
cut ≤ E7 ≤ (

√
s− E3)2 − E2

3 +m2
3 −m2

4

2(
√
s− E3 − |p3|) ,(36)

where E′
cut is the photon energy cut transformed to the

c.m.s. of ud̄γ and Emax
4 =

[
m2

4+ λ(s,m2
3,m

2
4)/(4s)

]
is the

maximum of the d̄ quark energy. We have neglected Ecut
on the left hand side of (33) and E′

cut in Emax
4 , which sim-

plifies the corresponding analytic expressions. The correct
phase space boundaries are then restored by checking the
condition E7 ≥ Ecut in the c.m.s. numerically. The spher-
ical angles of (32) vary again in the full range.

The phase space parametrization convenient for the
description of the photon radiation off the u quark or µ−
is obtained from (32) by a permutation of the final state
momenta.

In order to improve the convergence of the phase space
integration we perform the following mappings. The Breit–
Wigner shape of the W± resonances is taken into account
by the mapping

sW = ΓWmW tan
(
ΓWmW

NW
x+ ψmin

)
+m2

W , (37)

where NW is the normalization factor, NW = ΓWmW

/(ψmax − ψmin), with ψmin = arctan(smin
W −m2

W )/(ΓWmW )
and ψmax = arctan(smax

W −m2
W )/(ΓWmW ). The 1/t pole

due to the neutrino exchange diagram (1) of Fig. 1 is
mapped by transforming the polar angle of the virtual
W+ boson with respect to the positron beam θW accord-
ing to

cos θW = (1 − (1 + βW )r−x
W )/βW , (38)

where βW stands for for the velocity of the W+ boson and
rW = (1 + βW )/(1 − βW ).

The ∼ 1/E7 peaking of the bremsstrahlung photon
spectrum is eliminated by the mapping

E7 = Emin
7

(
Emax

7 /Emin
7
)x
, (39)

where Emin
7 and Emax

7 are the lower and upper limit of the
photon energy. The strong collinear peaking behavior of
the squared matrix element of reaction (22) corresponding
to the radiation off the initial state positron ∼ 1/(1 −
β cos θ7) is eliminated by the mapping

cos θ7 =
1
βe

(1 − (1 + βe)/rx
e ) (40)

with re = (1 + βe)/(1 − βe) and βe =
√

1 − 4m2
e/s being

the velocity of the electron in the c.m. system. Similarly,
the collinear peaking related to the radiation off the initial
state electron ∼ 1/(1+β cos θ7) is dealt with the mapping

cos θ7 =
1
βe

((1 − βe)rx
e − 1) . (41)

Finally, the collinear and soft photon peaking correspond-
ing to radiation off the final state fermion must be mapped
away, e.g. for the d̄ quark, 1/(p4 ·p7) ∼ 1/(C3−E3) is elim-
inated by the mapping

E3 = C3 − (C3 −m3)
(
C3 − Emax

3

C3 −m3

)x

, (42)

where C3 =
√
s347/2 + (m2

3 − m2
4)/(2

√
s347). In (37–42),

x denotes a random variable uniformly distributed in the
interval [0, 1].

The phase space parametrizations (28) and (32) to-
gether with the mappings (37–42) are implemented in a
single multichannel Monte Carlo program in a way de-
scribed in [16]. We use five different channels correspond-
ing to the photon radiation off each charged particle with
equal weights.

In the soft photon limit, we can perform the integration
over the photon phase space analytically:

|dσγ ||p7|<ω = − 1
(2π)3

∫
|p7|<ω

d3p7

2E7

(
gγl

p1

p1 · p7

− gγl
p2

p2 · p7
+ gγu

p3

p3 · p7
− gγd

p4

p4 · p7
+ gγl

p5

p5 · p7

)2

dσ0

= −
5∑

i,j=1

gγigγjI
ω
ij . (43)
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Table 1. Born cross sections in pb (no cuts)

Ecm GeV σall
0 σall

0 [16]
162.5 0.2685(0.4) 0.2688(3)
180.0 0.6612(0.9) 0.6616(7)
189.0 0.7037(1.0) 0.7044(8)
500.0 0.2810(0.5) 0.2817(5)
1000.0 0.1078(0.3) 0.1079(2)
2000.0 0.03736(1.2) 0.03748(8)
10000.0 0.002563(3) 0.002578(16)

Table 2. Cross sections3 in fb with the “canonical” cuts (46)

Ecm GeV σ0 σ0 [12] σγ σγ [12]
189.0 703.1(1) 703.5(3) 223.2(8) 224.0(4)
500.0 237.4(1) 237.4(1) 83.3(6) 83.4(3)
2000.0 13.96(1) 13.99(2) 7.05(8) 6.98(5)
10000.0 0.625(1) 0.624(3) 0.459(9) 0.457(6)

The bremsstrahlung integrals Iω
ij , which are defined by

Iω
ij =

1
(2π)3

∫
|p7|<ω

d3p7

2E7

pi · pj

(pi · p7)(pj · p7)
, (44)

for i 6= j may be found in Sect. 7 of [17]. For i = j we
have

Iω
ii = ln

2ω
mγ

− 1
βi

ln
1 + βi

1 − βi
, (45)

where βi is the velocity of the radiating particle in the
c.m.s. and mγ denotes a fictitious mass of the photon.

5 Numerical results

We now present our results for the Born cross section
e+e− → ud̄µ−ν̄µ and the corresponding hard bremsstrah-
lung process. We use the following physical parameters:
the gauge boson masses and widths are mW = 80.23 GeV,
ΓW = 2.085 GeV, mZ = 91.1888 GeV, ΓZ = 2.4974 GeV,
the fermion masses are me = 0.51099906 MeV, mµ =
105.658389 MeV, mτ = 1777.05 MeV, mu = 5 MeV, md =
10 MeV, ms = 170 MeV, mc = 1.3 GeV. The electroweak
standard model couplings are parametrized by
αW = 1/128.07 and by the electroweak mixing parameter
sin2 θW = 0.22591. The couplings of the bremsstrahlung
photon are parametrized by α = 1/137.0359895 which
means in practice that we multiply the matrix element
squared by the ratio α/αW .

Our results have been thoroughly tested and checked
against other calculations. The matrix elements have been

3 Here we adopt the parameters of [12]: mW = 80.26 GeV,
ΓW = 2.05 GeV, mZ = 91.1884 GeV, ΓZ = 2.46 GeV, α =
αW = 1/128.89 and sin2 θW = 1 − m2

W /m2
Z . The fermion

masses play no role in the presence of the cuts.

Table 3. Cut independence of σγ = σs + σh The photon mass
is mγ = 10−6 GeV

Ecm(GeV) ω (GeV) σs (fb) σh (fb) σs + σh (fb)
189 0.001 202.6(2) 1083(1) 1285

0.1 712.2(5) 572.8(6) 1285
1.0 967.0(7) 319.3(3) 1286

500 0.001 42.53(4) 528.3(1.0) 570.8
0.1 247.3(2) 322.7(6) 570.0
1.0 349.7(3) 220.4(4) 570.0

2000 0.1 26.73(4) 55.8(3) 82.5
1.0 40.75(8) 42.4(3) 83.1

10000 0.1 1.302(5) 4.85(6) 6.15
1.0 2.265(8) 3.84(6) 6.10

checked against MADGRAPH [18]. Moreover, as we al-
ready mentioned in Sect. 3, we have checked the elec-
tromagnetic gauge invariance of the matrix element of the
bremsstrahlung process both analytically and numerically.
The phase space integrals have been checked against their
asymptotic limits which have been obtained analytically.

The total cross sections in the Born approximation are
compared against EXCALIBUR [16] in Table 1, with no
cuts applied. In Table 2, we compare the Born cross sec-
tions σ0 and the corresponding hard bremsstrahlung cross
sections σγ with the results of [12] in the so-called constant
width scheme and with phase space integration restricted
by the “canonical” cuts. Let l, q, γ, and “beam” denote
charged leptons, quarks, photons, and the beam (electrons
or positrons), respectively, and θ(i, j) the angles between
the particles i and j in the c.m. system. Furthermore,
m(q, q′) denotes the invariant mass of a quark pair qq′.
The “canonical” cuts then read

θ(l,beam) > 10◦, θ(l, l′) > 5◦, θ(l, q) > 5◦,
θ(γ,beam) > 1◦, θ(γ, l) > 5◦, θ(γ, q) > 5◦,

Eγ > 0.1 GeV, El > 1 GeV, Eq > 3 GeV,
m(q, q′) > 5 GeV .

(46)
Except for the additional angular cut between the

charged leptons, which is irrelevant for the reactions con-
sidered here anyway, these cuts which exclude all collinear
and infrared singularities coincide with those defined in
[1]. Another test, which is very sensitive to the treatment
of the infrared and collinear singularities, is obtained by
splitting the photon radiation cross section (22) into a soft
and a hard part σγ = σs + σh and checking the indepen-
dence of the separation cut. The soft part includes the
photons with Eγ < ω and is given by (43). The hard part
then includes all photons with energies Eγ > ω. Further-
more, the total “inclusive” cross section is σ = σ0+σs+σh.
Since we have not yet included the infrared (IR) singu-
lar virtual one-loop corrections, σs only exists when it is
IR regularized in some way. Here we have chosen a small
photon mass mγ = 10−6 GeV. We demonstrate the cut
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Table 4. Mass dependence of cross sections (in fb; without cuts, except for Eγ > 0.1 GeV) for
different final states

Ecm GeV σ0(ud̄µ−ν̄µ) σ0(cs̄µ−ν̄µ) σ0(ud̄τ−ν̄τ ) σγ(ud̄µ−ν̄µ) σγ(cs̄µ−ν̄µ) σγ(ud̄τ−ν̄τ )
189.0 704.1(4) 703.8(4) 703.5(4) 573.4(4) 525.2(4) 522.6(4)
360.0 422.0(2) 421.8(2) 421.5(2) 448.5(4) 418.4(4) 414.1(4)
500.0 281.0(2) 280.9(2) 281.0(2) 322.8(4) 302.0(4) 298.1(3)
2000.0 37.33(4) 37.32(4) 37.32(4) 56.48(27) 53.19(25) 52.67(13)
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Fig. 2. The energy dependence of the total cross sections of
reactions (19) and (22)

(ω) independence of the soft–hard splitting in Table 3. It
is a measure of the numerical stability of our calculation
as well as a test for the validity of the factorization into a
radiation factor times the non-radiative cross section (43).

Finally, in Table 4 we illustrate the mass dependence
of the cross sections of related channels. The replacements
ud → cs and µ → τ lead to comparable effects. While the
Born cross sections remain practically unchanged the hard
bremsstrahlung cross section, for the energy cut Eγ >
0.1 GeV, changes by about −9% (189 GeV) to about −6%
(2 TeV).

The energy dependence of the total cross sections σ0
and σγ of reactions e+e− → ud̄µ−ν̄µ and e+e− → ud̄µ−
ν̄µ γ, respectively, is shown in Fig. 2. The hard brems-
strahlung cross section has been calculated with the pho-
ton energy cut of Eγ = 1 GeV.

At this point we would like to address the problem of
SU(2) gauge-symmetry violation caused by introducing
the constant widths ΓW and ΓZ in a more quantitative
way. For this purpose, in Fig. 3, we compare the e+e− →
ud̄µ−ν̄µ cross sections obtained when

e+e� ! W+W�

! u �d�����
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e+e� ! u �d�����

p
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200018001600140012001000800600400200
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Fig. 3. Lowest order cross sections obtained by including (i) all
diagrams, (ii) only diagrams with W ∗W ∗ intermediate states
and (iii) production and decay of on-shell W pairs (zero width
approximation)

(i) including all diagrams,
(ii) including only WW diagrams and
(iii) assuming the creation of an on-shell W± pair and

the subsequent decays W− → µ−ν̄µ and W+ → ud̄
(e+e− → W+W− → ud̄µ−ν̄µ).

Cases (i) and (ii) for the corresponding bremsstrahlung
reaction with the photon energy cut Eγ > 1 GeV are plot-
ted in Fig. 4. Although the constant width prescription
violates unitarity by spoiling the gauge cancellations in
both cases (i) and (ii), the unitarity violation is much
stronger in case (ii) where we have neglected the non
double-resonant diagrams. In case (i) the effect is prac-
tically negligible, at least in the energy range presented
in Fig. 3. This observation relies on the comparison with
the results of [12]. Our results which were calculated in
the linear gauge agree within statistical errors with those
of [12] which were obtained in a nonlinear gauge in the
so-called complex mass scheme that preserves the Ward
identities. In Figs. 3 and 4 we observe that the double-
resonant approximation provides a good approximation
of the complete calculation for c.m. energies from thresh-
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Fig. 4. Bremsstrahlung cross sections for Eγ > 1 GeV ob-
tained by including (i) all diagrams, (ii) only diagrams with
W ∗W ∗ intermediate states

old up to about 250 GeV. However, it already deviates by
0.5% (more than 1% for reaction (22)) at s1/2 = 500 GeV
and by about 2% at s1/2 = 1 TeV. On the other hand, we
see that the zero width approximation, which is gauge in-
variant by definition, deviates from the complete tree level
calculation by almost 18% at s1/2 = 165 GeV, by 4.3% at
s1/2 = 200 GeV and by −4.5% at s1/2 = 1 TeV.

The photon spectra at s1/2 = 189 GeV and s1/2 =
500 GeV are shown in Fig. 5. We see that the spectra

p
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E
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Fig. 5. The photon spectra at s1/2 = 189 GeV and s1/2 =
500 GeV
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Fig. 6. The differential cross section dσ/dm2
34 at s1/2 =

189 GeV versus the invariant mass of the ud̄ pair m34. The
upper curve corresponds to the tree level reaction (19) and
the lower curve to the bremsstrahlung reaction (22) with
Eγ > 1 GeV

are relatively soft, with a substantial fraction of events
having photon energies of O(ΓW ). A bump of the 189 GeV
spectrum at Eγ ∼ 25 GeV reflects the W pair production
threshold. We finally plot dσ/dm2

34 at s1/2 = 189 GeV as
a function of the invariant mass of the ud̄ pair m34 in
Fig. 6.

6 Conclusions and outlook

We have presented an efficient method for calculating pho-
ton radiation cross sections for massive fermions. For the
collinear region such finite mass calculations provide im-
portant tests for Monte Carlo generators which work with
massless fermions. We have studied a complete signal plus
background process with all possible real photon emission
diagrams for the interesting channel e+e− → ud̄µ−ν̄µ.
This channel is particularly suited for a detailed inves-
tigation of effects related to final state photon emission,
since the muons appear well separated from photons in
the detectors. In particular it seems to be interesting to
study the influence of final state radiation on the W mass
measurement via this channel. In addition, at a high lu-
minosity linear collider, like TESLA, one could study the
quark mass effects due to the different quark flavor chan-
nels in e+e− → µ−ν̄µ + hadrons. Of particular interest
would be a detailed investigation of the single top pro-
duction channel e+e− → tb̄µ−ν̄µ which will be discussed
in a forthcoming paper.
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